國立臺灣師範大學 109 學年度學士班二年級轉學生招生考試試題

科目:微積分

適用學系(組):數學系

注意:1.本試題共1頁,請依序在答案本上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。

一. 填充題 (答案本上只寫答案,不需要計算過程,請標明題號)

- 1. (20 points) Evaluate the following integrals.
 - (a) $\int x \tan^{-1} x \ dx$
 - (b) $\iint_R \sin(x-y)\cos^2(x+2y) dA$ where R is the parallelogram on the xy plane bounded by $x-y=0, x-y=\pi, x+2y=0$ and $x+2y=\frac{1}{2}\pi$.
- 2. (10 points) Find an equation of the tangent line to the curve $e^{x+2y} 2xy = 5$ at the point (2, -1).
- 3. (10 points) Find the volume of the solid bounded above by $z = 4 4(x^2 + y^2)$ and below by $z = x^2 + y^2 1$.

二. 計算證明題 (請在答案本上寫出計算或證明過程,沒有過程不予計分)

- 1. (10 points) Find the radius of convergence of the series $\sum_{n=1}^{\infty} \left(\frac{n}{n+1} \right)^{n^2} x^n$.
- 2. (20 points) Find the following limits (if it exits). If the limit does not exit, explain why.

(a)
$$\lim_{x \to \infty} (\ln x)^{1/x}$$
 (b) $\lim_{n \to \infty} \frac{1}{n^{17}} (1^{15} + 2^{15} + 3^{15} + \dots + n^{15})$

- 3. (10 points) Show that the function $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ is differentiable at x = 0 and find f'(0).
- 4. (10 points) Let n be any positive integer. Show that $f(x) = x^{2n+1} + ax b$ cannot have two real roots for any positive number a, b.
- 5. (10 points) Let $\mathbf{F}(x,y) = \left(-\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$ and C be any piecewise

smooth simple closed curve in ${\bf R}^2$ which encloses the origin (0,0) and is oriented counterclockwise. Calculate the line integral

$$\int_C \mathbf{F} \cdot d\mathbf{r}.$$