國立臺灣師範大學 103 學年度學士班二年級轉學生招生考試試題

科目:微積分

適用學系(組):數學系

注意:1. 本試題共1頁,請依序作答,並標明題號,不必抄題。

2. 答案必須寫在答案卷上之指定作答區內,否則依規定予以扣分。

- 1. Find the limit $\lim_{x\to a} \frac{\sec x \sec a}{x-a}$. (10 points)
- 2. Find the equation of the tangent line to the graph of the equation $x \sin y = y \cos x$ at the point $(\frac{\pi}{2}, \pi)$. (10 points)
- 3. Evaluate the following integrals:

(1)
$$\int \sqrt{1+\sqrt{x}} dx$$
 (7 points)

$$(2) \int_0^2 \frac{dx}{\sqrt{|x-1|}} \qquad (7 \text{ points})$$

(3)
$$\int \ln \sqrt{x^2 - 4} \ dx$$
 (8 points)

(3)
$$\int \ln \sqrt{x^2 - 4} \, dx$$
 (8 points)
(4) $\int_0^2 \int_0^{\sqrt{4-x^2}} \sin \sqrt{x^2 + y^2} \, dy dx$ (8 points)

- 4. Find the area under the parametric curve $x=a(t-\sin t),\,y=a(1-\cos t),\,0\leq t\leq 2\pi,$ a > 0. (10 points)
- 5. Find the extreme values of f(x, y, z) = x y + z on the unit sphere $x^2 + y^2 + z^2 = 1$. (10 points)
- 6. Integrate $f(x,y,z) = \sqrt{x^2 + y^2}$ over the involute curve $x = \cos t + t \sin t$, $y = \sin t t \sin t$ $t\cos t$, z = 0, $0 \le t \le \sqrt{3}$. (15 points)
- 7. (1) Explain the Mean Value Theory of the continuous function (differential form). No proof is needed. (5 points)
 - (2) Use the Mean Value Theory to prove that $\frac{31}{6} < \sqrt{27} < \frac{26}{5}$. (10 points)