[NTNU MATH-CAG-MSRC Jointed Seminar on Geometric Analysis] 【07月05日】畢宇晨 / Critical Allard regularity for 2-dimensional varifolds

by 温湘婷 | 2023-07-04 12:05:16

Critical Allard regularity for
2-dimensional varifolds

時 間:2023-07-05 14:00 (星期三) / 地 點:M210 

畢宇晨 博士
(中國科學院數學所)

The classical Allard regularity says, a rectifiable varifold in the unit ball of the Euclidean space passing through the origin with volume density close to 1 and generalized mean curvature small in \(L^p\) for some super-critical \(p>n\) must be a \(C^{1,\alpha=1-n/p}\) graph with estimate. In this presentation, we discuss the critical case \(p=n=2\). We get the bi-Lipschitz regularity and apply it to analysis the quantitative rigidity for \(L^2\) almost CMC surfaces in \(R^3\). This is a joint work with Jie Zhou.

Venue: https://us06web.zoom.us/j/87498894165?pwd=U0JzT3RTUGs2SmxFUHNMMjV3d2NuQT09

Source URL: https://virtual.math.ntnu.edu.tw/index.php/2023/07/04/20230705-speech/